首页> 外文OA文献 >The square root law of steganographic capacity for Markov covers.
【2h】

The square root law of steganographic capacity for Markov covers.

机译:隐马尔可夫覆盖能力的平方根定律。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is a well-established result that steganographic capacity of perfectly secure stegosystems grows linearly with the number of cover elements-secure steganography has a positive rate. In practice, however, neither the Warden nor the Steganographer has perfect knowledge of the cover source and thus it is unlikely that perfectly secure stegosystems for complex covers, such as digital media, will ever be constructed. This justifies study of secure capacity of imperfect stegosystems. Recent theoretical results from batch steganography, supported by experiments with blind steganalyzers, point to an emerging paradigm: whether steganography is performed in a large batch of cover objects or a single large object, there is a wide range of practical situations in which secure capacity rate is vanishing. In particular, the absolute size of secure payload appears to only grow with the square root of the cover size. In this paper, we study the square root law of steganographic capacity and give a formal proof of this law for imperfect stegosystems, assuming that the cover source is a stationary Markov chain and the embedding changes are mutually independent. © 2009 Copyright SPIE - The International Society for Optical Engineering.
机译:公认的结果是,完全安全的隐身系统的隐写能力随封面元素的数量呈线性增长,而安全隐写的比率为正。但是,实际上,监狱长和隐写术者都没有对封面来源的全面了解,因此不太可能为复杂的封面(例如数字媒体)构建完全安全的隐身系统。这证明了对不完善的隐身系统的安全能力进行研究的合理性。批量隐写术的最新理论结果得到盲式隐写分析仪实验的支持,这表明了一个新兴的范例:隐写术是在大批有盖物体还是单个大物体上进行的,在实际情况中,有多种方法可以确保安全的容量率正在消失。特别是,安全有效载荷的绝对大小似乎仅随封面大小的平方根而增加。在本文中,我们研究隐写能力的平方根定律,并为不完善的隐身系统提供了该定律的正式证明,假定覆盖源是平稳的马尔可夫链,并且嵌入变化是相互独立的。 ©2009版权所有SPIE-国际光学工程学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号